Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
1.
Mol Nutr Food Res ; : e2400063, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600885

RESUMO

Phenethyl isothiocyanate (PEITC), a compound derived from cruciferous vegetables, has garnered attention for its anticancer properties. This review synthesizes existing research on PEITC, focusing on its mechanisms of action in combatting cancer. PEITC has been found to be effective against various cancer types, such as breast, prostate, lung, colon, and pancreatic cancers. Its anticancer activities are mediated through several mechanisms, including the induction of apoptosis (programmed cell death), inhibition of cell proliferation, suppression of angiogenesis (formation of new blood vessels that feed tumors), and reduction of metastasis (spread of cancer cells to new areas). PEITC targets crucial cellular signaling pathways involved in cancer progression, notably the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB), Protein Kinase B (Akt), and Mitogen-Activated Protein Kinase (MAPK) pathways. These findings suggest PEITC's potential as a therapeutic agent against cancer. However, further research is necessary to determine the optimal dosage, understand its bioavailability, and assess potential side effects. This will be crucial for developing PEITC-based treatments that are both effective and safe for clinical use in cancer therapy.

2.
Drug Dev Res ; 85(2): e22175, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38567708

RESUMO

Icaritin is a natural prenylated flavonoid derived from the Chinese herb Epimedium. The compound has shown antitumor effects in various cancers, especially hepatocellular carcinoma (HCC). Icaritin exerts its anticancer activity by modulating multiple signaling pathways, such as IL-6/JAK/STAT3, ER-α36, and NF-κB, affecting the tumor microenvironment and immune system. Several clinical trials have evaluated the safety and efficacy of icaritin in advanced HCC patients with poor prognoses, who are unsuitable for conventional therapies. The results have demonstrated that icaritin can improve survival, delay progression, and produce clinical benefits in these patients, with a favorable safety profile and minimal adverse events. Moreover, icaritin can enhance the antitumor immune response by regulating the function and phenotype of various immune cells, such as CD8+ T cells, MDSCs, neutrophils, and macrophages. These findings suggest that icaritin is a promising candidate for immunotherapy in HCC and other cancers. However, further studies are needed to elucidate the molecular mechanisms and optimal dosing regimens of icaritin and its potential synergistic effects with other agents. Therefore, this comprehensive review of the scientific literature aims to summarize advances in the knowledge of icaritin in preclinical and clinical studies as well as the pharmacokinetic, metabolism, toxicity, and mechanisms action to recognize the main challenge, gaps, and opportunities to develop a medication that cancer patients can use. Thus, our main objective was to clarify the current state of icaritin for use as an anticancer drug.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Artigo em Inglês | MEDLINE | ID: mdl-38652277

RESUMO

Arnicolide D, a potent sesquiterpene lactone from Centipeda minima, has emerged as a promising anticancer candidate, demonstrating significant efficacy in inhibiting cancer cell proliferation, inducing apoptosis, and suppressing metastasis across various cancer models. This comprehensive study delves into the molecular underpinnings of Arnicolide D's anticancer actions, emphasizing its impact on key signaling pathways such as PI3K/AKT/mTOR and STAT3, and its role in modulating cell cycle and survival mechanisms. Quantitative data from preclinical studies reveal Arnicolide D's dose-dependent cytotoxicity against cancer cell lines, including nasopharyngeal carcinoma, triple-negative breast cancer, and human colon carcinoma, showcasing its broad-spectrum anticancer potential. Given its multifaceted mechanisms and preclinical efficacy, Arnicolide D warrants further investigation in clinical settings to validate its therapeutic utility against cancer. The evidence presented underscores the need for rigorous pharmacokinetic and toxicological studies to establish safe dosing parameters for future clinical trials.

4.
Phytother Res ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616356

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-beta plaques and neurofibrillary tangles, leading to neuronal loss. Curcumin, a polyphenolic compound derived from Curcuma longa, has shown potential neuroprotective effects due to its anti-inflammatory and antioxidant properties. This review aims to synthesize current preclinical data on the anti-neuroinflammatory mechanisms of curcumin in the context of AD, addressing its pharmacokinetics, bioavailability, and potential as a therapeutic adjunct. An exhaustive literature search was conducted, focusing on recent studies within the last 10 years related to curcumin's impact on neuroinflammation and its neuroprotective role in AD. The review methodology included sourcing articles from specialized databases using specific medical subject headings terms to ensure precision and relevance. Curcumin demonstrates significant neuroprotective properties by modulating neuroinflammatory pathways, scavenging reactive oxygen species, and inhibiting the production of pro-inflammatory cytokines. Despite its potential, challenges remain regarding its limited bioavailability and the scarcity of comprehensive human clinical trials. Curcumin emerges as a promising therapeutic adjunct in AD due to its multimodal neuroprotective benefits. However, further research is required to overcome challenges related to bioavailability and to establish effective dosing regimens in human subjects. Developing novel delivery systems and formulations may enhance curcumin's therapeutic potential in AD treatment.

5.
Curr Nutr Rep ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498287

RESUMO

PURPOSE OF REVIEW: This review delves into the complex interplay between obesity-induced gut microbiota dysbiosis and the progression of type 2 diabetes mellitus (T2DM), highlighting the potential of natural products in mitigating these effects. By integrating recent epidemiological data, we aim to provide a nuanced understanding of how obesity exacerbates T2DM through gut flora alterations. RECENT FINDINGS: Advances in research have underscored the significance of bioactive ingredients in natural foods, capable of restoring gut microbiota balance, thus offering a promising approach to manage diabetes in the context of obesity. These findings build upon the traditional use of medicinal plants in diabetes treatment, suggesting a deeper exploration of their mechanisms of action. This comprehensive manuscript underscores the critical role of targeting gut microbiota dysbiosis in obesity-related T2DM management and by bridging traditional knowledge with current scientific evidence; we highlighted the need for continued research into natural products as a complementary strategy for comprehensive diabetes care.

6.
Pharmacol Rep ; 76(2): 287-306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526651

RESUMO

Cancer remains one of the leading causes of death in the world. Despite the considerable success of conventional treatment strategies, the incidence and mortality rates are still high, making developing new effective anticancer therapies an urgent priority. Ginsenoside Rg5 (Rg5) is a minor ginsenoside constituent obtained exclusively from ginseng species and is known for its broad spectrum of pharmacological activities. This article aimed to comprehensively review the anticancer properties of Rg5, focusing on action mechanisms, structure-activity relationship (SAR), and pharmacokinetics attributes. The in vitro and in vivo activities of Rg5 have been proven against several cancer types, such as breast, liver, lung, bone, and gastrointestinal (GI) cancers. The modulation of multiple signaling pathways critical for cancer growth and survival mediates these activities. Nevertheless, human clinical studies of Rg5 have not been addressed before, and there is still considerable ambiguity regarding its pharmacokinetics properties. In addition, a significant shortage in the structure-activity relationship (SAR) of Rg5 has been identified. Therefore, future efforts should focus on further optimization by performing extensive SAR studies to uncover the structural features essential for the potent anticancer activity of Rg5. Thus, this review highlights the value of Rg5 as a potential anticancer drug candidate and identifies the research areas requiring more investigation.


Assuntos
Antineoplásicos , Ginsenosídeos , Neoplasias , Humanos , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade
7.
Fitoterapia ; 175: 105896, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471574

RESUMO

Morroniside (MOR) is an iridoid glycoside and the main active principle of the medicinal plant, Cornus officinalis Sieb. This phytochemical is associated with numerous health benefits due to its antioxidant properties. The primary objective of the present study was to assess the pharmacological effects and underlying mechanisms of MOR, utilizing published data obtained from literature databases. Data collection involved accessing various sources, including PubMed/Medline, Scopus, Science Direct, Google Scholar, Web of Science, and SpringerLink. Our findings demonstrate that MOR can be utilized for the treatment of several diseases and disorders, as numerous studies have revealed its significant therapeutic activities. These activities encompass anti-inflammatory, antidiabetic, lipid-lowering capability, anticancer, trichogenic, hepatoprotective, gastroprotective, osteoprotective, renoprotective, and cardioprotective effects. MOR has also shown promising benefits against various neurological ailments, including Alzheimer's disease, Parkinson's disease, spinal cord injury, cerebral ischemia, and neuropathic pain. Considering these therapeutic features, MOR holds promise as a lead compound for the treatment of various ailments and disorders. However, further comprehensive preclinical and clinical trials are required to establish MOR as an effective and reliable therapeutic agent.

8.
Phytother Res ; 38(4): 1932-1950, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358681

RESUMO

Morinda citrifolia L., commonly known as Noni, has a longstanding history in traditional medicine for treating various diseases. Recently, there has been an increased focus on exploring Noni extracts and phytoconstituents, particularly for their effectiveness against cancers such as lung, esophageal, liver, and breast cancer, and their potential in cancer chemoprevention. This study aims to provide a comprehensive review of in vitro and in vivo studies assessing Noni's impact on cancer, alongside an exploration of its bioactive compounds. A systematic review was conducted, encompassing a wide range of scientific databases to gather pertinent literature. This review focused on in vitro and in vivo studies, as well as clinical trials that explore the effects of Noni fruit and its phytoconstituents-including anthraquinones, flavonoids, sugar derivatives, and neolignans-on cancer. The search was meticulously structured around specific keywords and criteria to ensure a thorough analysis. The compiled studies highlight Noni's multifaceted role in cancer therapy, showcasing its various bioactive components and their modes of action. This includes mechanisms such as apoptosis induction, cell cycle arrest, antiangiogenesis, and immune system modulation, demonstrating significant anticancer and chemopreventive potential. The findings reinforce Noni's potential as a safe and effective option in cancer prevention and treatment. This review underscores the need for further research into Noni's anticancer properties, with the hope of stimulating additional studies and clinical trials to validate and expand upon these promising findings.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias da Mama , Morinda , Humanos , Feminino , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Medicina Tradicional , Neoplasias da Mama/tratamento farmacológico , Frutas
9.
Mol Biol Rep ; 51(1): 296, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340202

RESUMO

Circular RNAs (circRNAs) are a unique family of endogenous RNAs devoid of 3' poly-A tails and 5' end caps. These single-stranded circRNAs, found in the cytoplasm, are synthesized via back-splicing mechanisms, merging introns, exons, or both, resulting in covalently closed circular loops. They are profusely expressed across the eukaryotic transcriptome and offer heightened stability against exonuclease RNase R compared to linear RNA counterparts. This review endeavors to provide a comprehensive overview of circRNAs' characteristics, biogenesis, and mechanisms of action. Furthermore, aimed to shed light on the potential of circRNAs as significant biomarkers in various cancer types. It has been performed an exhaustive literature review, drawing on recent studies and findings related to circRNA characteristics, synthesis, function, evaluation techniques, and their associations with oncogenesis. CircRNAs are intricately associated with tumor progression and development. Their multifaceted roles encompass gene regulation through the sponging of proteins and microRNAs, controlling transcription and splicing, interacting with RNA binding proteins (RBPs), and facilitating gene translation. Due to these varied roles, circRNAs have become a focal point in tumor pathology investigations, given their promising potential as both biomarkers and therapeutic agents. CircRNAs, due to their unique biogenesis and multifunctionality, hold immense promise in the realm of oncology. Their stability, widespread expression, and intricate involvement in gene regulation underscore their prospective utility as reliable biomarkers and therapeutic targets in cancer. As our understanding of circRNAs deepens, advanced techniques for their detection, evaluation, and manipulation will likely emerge. These advancements might catalyze the translation of circRNA-based diagnostics and therapeutics into clinical practice, potentially revolutionizing cancer care and prognosis.


Assuntos
MicroRNAs , Neoplasias , Humanos , RNA Circular/genética , RNA/genética , RNA/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/diagnóstico , Biomarcadores , Regulação da Expressão Gênica
10.
Eur J Med Res ; 29(1): 106, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326876

RESUMO

Scientists have been compelled to search for alternative treatments due to the increasing prevalence of chemoresistance as well as the agonising and distressing side effects of both chemotherapy and radiation. Plant extracts have been exploited to treat various medical conditions for ages. Considering this fact, the main focus of various recent studies that are being conducted to find new and potent anticancer drugs involves the identification and utilisation of potential therapeutic chemicals present in plant extracts. Koetjapic acid (KJA), which belongs to the family of triterpenes, is primarily isolated from Sandoricum koetjape. Ongoing investigations into its therapeutic applications have revealed its tendency to impede the growth and proliferation of cancer cells. Koetjapic acid activates the intrinsic apoptotic pathway and promotes the death of cancer cells. Moreover, it inhibits angiogenesis and the dissemination of tumour (metastasis) by targeting the VEGF signalling cascade. Therefore, this study aims to elucidate the underlying mechanism of anticancer activity of koetjapic acid, providing significant insight into the compound's potential as an anticancer agent.


Assuntos
Antineoplásicos , Triterpenos , Humanos , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Triterpenos/química , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Extratos Vegetais/farmacologia
11.
Chem Biodivers ; : e202400114, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386539

RESUMO

In the quest to evade side effects associated with synthetic drugs, mankind is continually exploring natural sources. In recent decades, neurodegenerative disorders (NDDs) have surged dramatically compared to other human diseases. Flavonoids, naturally occurring compounds, have emerged as potential preventers of NDD development. Notably, quercetin and its derivatives demonstrated excellent antioxidant properties in the fight against NDDs. Recognizing bee-collected pollen (BP) as a well-established excellent source of quercetin and its derivatives, this review seeks to consolidate available data on the prevalence of this flavonoid in BP, contingent upon its botanical and geographical origins. It aims to advocate for BP as a superb natural source of "drugs" that could serve as preventative measures against NDDs. Examination of numerous published articles, detailing the phenolic profile of BP, suggests that it can be a great source of quercetin, with an average range of up to 1000 mg/kg. In addition to quercetin, 24 derivatives (with rutin being the most predominant) have been identified. Theoretical calculations, based on the recommended dietary intake for quercetin, indicate that BP can fulfil from 0.1 to over 100 % of the requirement, depending on BP's origin and bioaccessibility/bioavailability during digestion.

12.
Cell Commun Signal ; 22(1): 7, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167159

RESUMO

Cancer remains a significant global public health concern, with increasing incidence and mortality rates worldwide. Oxidative stress, characterized by the production of reactive oxygen species (ROS) within cells, plays a critical role in the development of cancer by affecting genomic stability and signaling pathways within the cellular microenvironment. Elevated levels of ROS disrupt cellular homeostasis and contribute to the loss of normal cellular functions, which are associated with the initiation and progression of various types of cancer. In this review, we have focused on elucidating the downstream signaling pathways that are influenced by oxidative stress and contribute to carcinogenesis. These pathways include p53, Keap1-NRF2, RB1, p21, APC, tumor suppressor genes, and cell type transitions. Dysregulation of these pathways can lead to uncontrolled cell growth, impaired DNA repair mechanisms, and evasion of cell death, all of which are hallmark features of cancer development. Therapeutic strategies aimed at targeting oxidative stress have emerged as a critical area of investigation for molecular biologists. The objective is to limit the response time of various types of cancer, including liver, breast, prostate, ovarian, and lung cancers. By modulating the redox balance and restoring cellular homeostasis, it may be possible to mitigate the damaging effects of oxidative stress and enhance the efficacy of cancer treatments. The development of targeted therapies and interventions that specifically address the impact of oxidative stress on cancer initiation and progression holds great promise in improving patient outcomes. These approaches may include antioxidant-based treatments, redox-modulating agents, and interventions that restore normal cellular function and signaling pathways affected by oxidative stress. In summary, understanding the role of oxidative stress in carcinogenesis and targeting this process through therapeutic interventions are of utmost importance in combating various types of cancer. Further research is needed to unravel the complex mechanisms underlying oxidative stress-related pathways and to develop effective strategies that can be translated into clinical applications for the management and treatment of cancer. Video Abstract.


Assuntos
Fator 2 Relacionado a NF-E2 , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais , Neoplasias/metabolismo , Oxirredução , Carcinogênese , Microambiente Tumoral
13.
Eur J Med Res ; 29(1): 90, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291541

RESUMO

Cancer is a disease that can cause abnormal cell growth and can spread throughout the body. It is among the most significant causes of death worldwide, resulting in approx. 10 million deaths annually. Many synthetic anticancer drugs are available, but they often come with side effects and can interact negatively with other medications. Additionally, many chemotherapy drugs used for cancer treatment can develop resistance and harm normal cells, leading to dose-limiting side effects. As a result, finding effective cancer treatments and developing new drugs remains a significant challenge. However, plants are a potent source of natural products with the potential for cancer treatment. These biologically active compounds may be the basis for enhanced or less toxic derivatives. Herbal medicines/phytomedicines, or plant-based drugs, are becoming more popular in treating complicated diseases like cancer due to their effectiveness and are a particularly attractive option due to their affordability, availability, and lack of serious side effects. They have broad applicability and therapeutic efficacy, which has spurred scientific research into their potential as anticancer agents. This review focuses on Paclitaxel (PTX), a plant-based drug derived from Taxus sp., and its ability to treat specific tumors. PTX and its derivatives are effective against various cancer cell lines. Researchers can use this detailed information to develop effective and affordable treatments for cancer.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Paclitaxel/farmacologia , Paclitaxel/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Plantas
14.
J Biol Eng ; 18(1): 12, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273413

RESUMO

BACKGROUND: Polymeric nanoparticles can be used for wound closure and therapeutic compound delivery, among other biomedical applications. Although there are several nanoparticle obtention methods, it is crucial to know the adequate parameters to achieve better results. Therefore, the objective of this study was to optimize the parameters for the synthesis, purification, and freeze-drying of chitosan nanoparticles. We evaluated the conditions of agitation speed, anion addition time, solution pH, and chitosan and sodium tripolyphosphate concentration. RESULTS: Chitosan nanoparticles presented an average particle size of 172.8 ± 3.937 nm, PDI of 0.166 ± 0.008, and zeta potential of 25.00 ± 0.79 mV, at the concentration of 0.1% sodium tripolyphosphate and chitosan (pH 5.5), with a dripping time of 2 min at 500 rpm. The most representative factor during nanoparticle fabrication was the pH of the chitosan solution, generating significant changes in particle size and polydispersity index. The observed behavior is attributed to the possible excess of sodium tripolyphosphate during synthesis. We added the surfactants poloxamer 188 and polysorbate 80 to evaluate the stability improvement during purification (centrifugation or dialysis). These surfactants decreased coalescence between nanoparticles, especially during purification. The centrifugation increased the zeta potential to 40.8-56.2 mV values, while the dialyzed samples led to smaller particle sizes (152-184 nm). Finally, freeze-drying of the chitosan nanoparticles proceeded using two cryoprotectants, trehalose and sucrose. Both adequately protected the system during the process, and the sugar concentration depended on the purification process. CONCLUSIONS: In Conclusion, we must consider each surfactant's benefits in formulations for selecting the most suitable. Also, it is necessary to do more studies with the molecule to load. At the same time, the use of sucrose and trehalose generates adequate protection against the freeze-drying process, even at a 5% w/v concentration. However, adjusting the percentage concentration by weight must be made to work with the CS-TPP NPs purified by dialysis.

15.
Chin Med ; 19(1): 17, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267965

RESUMO

Cancer remains one of the leading causes of mortality worldwide. The search for novel and effective anticancer agents has been a significant area of research. Dibenzocyclooctadiene lignans (DBCLS), derived from the Schisandra genus plants like: S. chinensis, S. sphenanthera, S. henryi, S. rubriflora, S. grandiflora, S. propinqua, and S. glabra, have been traditionally used in various medicinal systems and are known for their myriad health benefits, including anticancer properties. This comprehensive review aimed to collate and critically analyse the recent literature on the anticancer properties of DBCLS, focusing on their mechanistic approaches against different cancer types. An exhaustive literature search was performed using databases like PubMed/MedLine, Scopus, Web of Science, Embase, TRIP database and Google Scholar from 1980 to 2023. Peer-reviewed articles that elucidated the mechanistic approach of these lignans on cancer cell lines, in vivo models and preliminary clinical studies were included. Studies were assessed for their experimental designs, cancer types studied, and the mechanistic insights provided. The studies demonstrate that the anticancer effects of DBCLS compounds are primarily driven by their ability to trigger apoptosis, arrest the cell cycle, induce oxidative stress, modulate autophagy, and disrupt essential signaling pathways, notably MAPK, PI3K/Akt, and NF-κB. Additionally, these lignans have been shown to amplify the impact of traditional chemotherapy treatments, suggesting their potential role as supportive adjuncts in cancer therapy. Notably, several studies also emphasise their capacity to target cancer stem cells and mitigate multi-drug resistance specifically. DBCLS from the Schisandra genus have showcased significant potential as anticancer agents. Their multi-targeted mechanistic approach makes them promising candidates for further research, potentially leading to developing of new therapeutic strategies in cancer management.

16.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1455-1476, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37736836

RESUMO

With cancer being a leading cause of death globally, there is an urgent need to improve therapeutic strategies and identify effective chemotherapeutics. This study aims to highlight the potential of crocetin, a natural product derived from certain plants, as an anticancer agent. It was  conducted an extensive review of the existing literature to gather and analyze the most recent data on the chemical properties of crocetin and its observed effects in various in vitro and in vivo studies. The study  particularly focused on studies that examined crocetin's impact on cell cycle dynamics, apoptosis, caspases and antioxidant enzyme levels, tumor angiogenesis, inflammation, and overall tumor growth. Crocetin exhibited diverse anti-tumorigenic activities including inhibition of tumor cell proliferation, apoptosis induction, angiogenesis suppression, and potentiation of chemotherapy. Multiple cellular and molecular pathways such as the PI3K/Akt, MAPK and NF-κB were modulated by it. Crocetin demonstrates promising anti-cancer properties and offers potential as an adjunctive or alternative therapy in oncology. More large-scale, rigorously designed clinical trials are needed to establish therapeutic protocols and ascertain the comprehensive benefits and safety profile of crocetin in diverse cancer types.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Vitamina A/análogos & derivados , Humanos , Vitamina A/uso terapêutico , Carotenoides/farmacologia , Carotenoides/uso terapêutico , Antioxidantes/farmacologia , Neoplasias/tratamento farmacológico , Apoptose
17.
Phytother Res ; 38(2): 592-619, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37929761

RESUMO

Sterols, including ß-sitosterol, are essential components of cellular membranes in both plant and animal cells. Despite being a major phytosterol in various plant materials, comprehensive scientific knowledge regarding the properties of ß-sitosterol and its potential applications is essential for scholarly pursuits and utilization purposes. ß-sitosterol shares similar chemical characteristics with cholesterol and exhibits several pharmacological activities without major toxicity. This study aims to bridge the gap between phytochemistry and current pharmacological evidence of ß-sitosterol, focusing on its anticancer activity and other biomedical properties. The goal is to provide a comprehensive understanding of ß-sitosterol's potential for future translational approaches. A thorough examination of the literature was conducted to gather relevant information on the biological properties of ß-sitosterol, particularly its anticancer therapeutic potential. Various databases were searched, including PubMed/MedLine, Scopus, Google Scholar, and Web of Science using appropriate keywords. Studies investigating the effects of ß-sitosterol on different types of cancer were analyzed, focusing on mechanisms of action, pharmacological screening, and chemosensitizing properties. Modern pharmacological screening studies have revealed the potential anticancer therapeutic properties of ß-sitosterol against various types of cancer, including leukemia, lung, stomach, breast, colon, ovarian, and prostate cancer. ß-sitosterol has demonstrated chemosensitizing effects on cancer cells, interfering with multiple cell signaling pathways involved in proliferation, cell cycle arrest, apoptosis, survival, metastasis invasion, angiogenesis, and inflammation. Structural derivatives of ß-sitosterol have also shown anti-cancer effects. However, research in the field of drug delivery and the detailed mode of action of ß-sitosterol-mediated anticancer activities remains limited. ß-sitosterol, as a non-toxic compound with significant pharmacological potential, exhibits promising anticancer effects against various cancer types. Despite being relatively less potent than conventional cancer chemotherapeutics, ß-sitosterol holds potential as a safe and effective nutraceutical against cancer. Further comprehensive studies are recommended to explore the biological properties of ß-sitosterol, including its mode of action, and develop novel formulations for its potential use in cancer treatment. This review provides a foundation for future investigations and highlights the need for further research on ß-sitosterol as a potent superfood in combating cancer.


Assuntos
Leucemia , Fitosteróis , Neoplasias da Próstata , Humanos , Masculino , Animais , Extratos Vegetais/farmacologia , Sitosteroides/farmacologia , Sitosteroides/uso terapêutico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Etnofarmacologia
18.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 703-724, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37615709

RESUMO

The main objective of this review is to highlight the therapeutic potential of allicin, a defense molecule in garlic known for its diverse health benefits, and address the key challenges of its bioavailability and stability. The research further aims to evaluate various formulation strategies and nanotechnology-based delivery systems that can resolve these issues and improve allicin's clinical efficacy, especially in cancer therapy. We conducted a comprehensive review of the available literature and previous studies, focusing on the therapeutic properties of allicin, its bioavailability, stability issues, and novel formulation strategies. We assessed the mechanism of action of allicin in cancer, including its effects on signaling pathways, cell cycle, apoptosis, autophagy, and tumor development. We also evaluated the outcomes of both in vitro and in vivo studies on different types of cancers, such as breast, cervical, colon, lung, and gastric cancer. Despite allicin's significant therapeutic benefits, including cardiovascular, antihypertensive, cholesterol-lowering, antimicrobial, antifungal, anticancer, and immune-modulatory activity, its clinical utility is limited due to poor stability and unpredictable bioavailability. Allicin's bioavailability in the gastrointestinal tract is dependent on the activity of the enzyme alliinase, and its stability can be affected by various conditions like gastric acid and intestinal enzyme proteases. Recent advances in formulation strategies and nanotechnology-based drug delivery systems show promise in addressing these challenges, potentially improving allicin's solubility, stability, and bioavailability. Allicin offers substantial potential for cancer therapy, yet its application is hindered by its instability and poor bioavailability. Novel formulation strategies and nanotechnology-based delivery systems can significantly overcome these limitations, enhancing the therapeutic efficacy of allicin. Future research should focus on refining these formulation strategies and delivery systems, ensuring the safety and efficacy of these new allicin formulations. Clinical trials and long-term studies should be carried out to determine the optimal dosage, assess potential side effects, and evaluate their real-world applicability. The comparative analysis of different drug delivery approaches and the development of targeted delivery systems can also provide further insight into enhancing the therapeutic potential of allicin.


Assuntos
Dissulfetos , Neoplasias , Humanos , Disponibilidade Biológica , Ácidos Sulfínicos/uso terapêutico , Ácidos Sulfínicos/metabolismo , Ácidos Sulfínicos/farmacologia , Resultado do Tratamento , Neoplasias/tratamento farmacológico
19.
Crit Rev Biotechnol ; 44(2): 319-336, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36593064

RESUMO

Phloroglucinol and derived compounds comprise a huge class of secondary metabolites widely distributed in plants and brown algae. A vast array of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and anticancer has been associated to this class of compounds. In this review, the available data on the antiviral and antibacterial capacity of phloroglucinols have been analyzed. Some of these compounds and derivatives show important antimicrobial properties in vitro. Phloroglucinols have been shown to be effective against viruses, such as human immunodeficiency virus (HIV), herpes or enterovirus, and preliminary data through docking analysis suggest that they can be effective against SARS-CoV-19. Also, some phloroglucinols derivatives have shown antibacterial effects against diverse bacteria strains, including Bacillus subtilis and Staphylococcus aureus, and (semi)synthetic development of novel compounds have led to phloroglucinols with a significantly increased biological activity. However, therapeutic use of these compounds is hindered by the absence of in vivo studies and scarcity of information on their mechanisms of action, and hence further research efforts are required. On the basis of this consideration, our work aims to gather data regarding the efficacy of natural-occurring and synthetic phloroglucinol derivatives as antiviral and antibacterial agents against human pathogens, which have been published during the last three decades. The recollection of results reported in this review represents a valuable source of updated information that will potentially help researchers in the development of novel antimicrobial agents.


Assuntos
Anti-Infecciosos , Floroglucinol , Humanos , Floroglucinol/farmacologia , Floroglucinol/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Inflamatórios , Antivirais/farmacologia , Antivirais/uso terapêutico
20.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1505-1524, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37755516

RESUMO

Saussurea costus (Falc.) Lipsch., commonly known as costus, is a perennial herb that has been traditionally used in various indigenous medicinal systems across Asia. Its historical prominence in traditional remedies underscores the need to explore its phytochemical composition, pharmacological properties, and potential therapeutic benefits. This review aims to provide a comprehensive overview of the available literature on the pharmacological properties, phytochemical constituents, ethnobotanical uses, and therapeutic potential of S. costus. An exhaustive search was performed across multiple electronic databases, including PubMed/MedLine, Google Scholar, Web of Science, Scopus, TRIP database, and Science Direct. Both experimental and clinical studies, as well as traditional ethnobotanical records, were considered for inclusion. The phytochemical analysis revealed that S. costus contains a plethora of bioactive compounds, including sesquiterpenes, flavonoids, and essential oils, which are responsible for its myriad of medicinal properties. The pharmacological studies have demonstrated its anti-inflammatory, anti-oxidant, anti-cancer, hepatoprotective, and immunomodulatory effects, among others. Ethnobotanical data showcased its extensive use in treating ailments like asthma, digestive disorders, and skin conditions. Some clinical trials also underscore its efficacy in certain health conditions, corroborating its traditional uses. S. costus possesses significant therapeutic potential, largely attributable to its rich phytochemical composition; the convergence of its traditional uses and modern pharmacological findings suggests promising avenues for future research, especially in drug development and understanding its mechanism of action in various ailments.


Assuntos
Saussurea , Sesquiterpenos , Saussurea/química , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/análise , Sesquiterpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...